

Application Binding Page 1 from 14 April 14, 2021

Application Binding

A detailed description how to bind your application to Guiliani to make full use of its features

Product: Guiliani-SDK

Release version: 2.4

Release date: April 14, 2021

Table of contents

1 Introduction .. 2

2 Prerequisites ... 2

2.1 Intended audience .. 2

2.2 Preparation and compilation .. 2

2.3 Reference ... 2

3 How application and GUI work together ... 3

3.1 Event-flow of Guiliani ... 3

3.2 DataPool .. 3

3.2.1 Examples .. 4

3.2.2 Set DataPool from application ... 6

3.3 Commands ... 8

3.3.1 CMD_CALLAPI .. 8

3.3.2 CMD_CUSTOM .. 9

4 Extend the functionality of Guiliani ... 11

4.1 Create new features by sub-classing .. 11

4.2 Custom-Extensions .. 12

4.2.1 Generating a Custom-Extension in the GSE .. 12

4.2.2 Use Custom-Enumeration .. 13

Application Binding Page 2 from 14 April 14, 2021

1 Introduction

This manual explains how your application can be enhanced using Guiliani-features. It also

describes how to bind business-logic to the GUI.

2 Prerequisites

2.1 Intended audience

This manual is aimed at programmers that implement new extended Guiliani functionality. A

basic understanding of the Guiliani core concepts is necessary to follow this manual. It is also

recommended to have basic knowledge of the GSE and how to do things with it.

2.2 Preparation and compilation

Since for most parts of this document a compilation of the application or even the GSE is

needed, please refer to the appropriate document for your platform to see how to set up your

build-environment.

2.3 Reference

For detailed information on the topic described in this document and a complete reference

please refer to the Guiliani API-documentation.

Application Binding Page 3 from 14 April 14, 2021

3 How application and GUI work together

What a useless piece of code would be an application when it could not interact with the GUI

and vice versa. Fortunately Guiliani offers various ways – each with its good and bad sides – to

help communicate between business-logic and GUI.

3.1 Event-flow of Guiliani

The following image depicts how the events go through the various parts of Guiliani and will

eventually reach the application by Commands and DataPool.

The basic way of exchanging data and react to events is to use DataPool and commands.

3.2 DataPool

The DataPool is a way of exchanging data between the business-logic of your application and

the GUI. To have this work a DataPool-item needs to be present in the application, created

either manually by code or inside the GSE.

Also different controls in your application can be hooked to the same DataPool and so share

the exact same information. This can be used to synchronize controls in your GUI.

Application Binding Page 4 from 14 April 14, 2021

3.2.1 Examples

Place two checkboxes into a dialog in the GSE and hook them to the same DataPool.

When you click on one of them the other one will set the value accordingly.

Application Binding Page 5 from 14 April 14, 2021

Now insert a Slider and a TextField and attach them to another DataPool.

Application Binding Page 6 from 14 April 14, 2021

When you move the slider the TextField will mirror the value.

Of course it is not necessary that all controls which are attached to a DataPool will have to be

in the same dialog. If a new dialog is created, Guiliani checks for the IDs of new controls and

sets them according to the value of the DataPool.

3.2.2 Set DataPool from application

To set a DataPool to a specific value you basically call the following code:

Application Binding Page 7 from 14 April 14, 2021

CGUIDataPool::Set(DATAPOOL_ID, VALUE, X, Y);

Where DATAPOOL_ID is the ID which is used in your GSE-project to identify the DataPool

and VALUE is a CGUIValue-instance containing the desired value. If you have a two-

dimensional DataPool-item you can also specify where this value should be written to.

The next time the GUI-loop goes through the DataPool-processing it will take all waiting

changes and apply them to the appropriate DataPool-items. After that the attached objects are

notified and will update according to the sent value.

Application Binding Page 8 from 14 April 14, 2021

3.3 Commands

Commands can be used to trigger certain actions, either in the application or in the GUI. Inside

a Command it is safe to manipulate the GUI directly by the application, since the Command

will get executed inside the context of the GUI-thread. However, the time between the

insertion of the command into the command-queue of Guiliani and its execution may vary

based on the workload of the GUI and overall resources. But in most cases it is a slight delay

of a few milliseconds.

Note: Commands are not guaranteed to be executed immediately. But it is guaranteed to

be safe within the Command to access the GUI.

The core of a command is the method Do() which will be called by the command-handler of

Guiliani when it is time to be executed.

3.3.1 CMD_CALLAPI

The simplest way of triggering the application via a command is the CallAPI-Command. Here

you just specify two string-parameters which can be used to distinguish what to do in the

application.

When this command is attached to a control and is triggered, a short time later the method

DoCallAPI of your application is called and you can react to the call according to the

parameters kAPI and kParam.

Insert a button and attach a CMD_CALLAPI to it. Enter “TestAPI” for the first attribute and

“TestParam” for the second one.

Application Binding Page 9 from 14 April 14, 2021

Now go into your application source-code at the file MyGUI_SR.cpp to the method

“DoCallAPI”. Insert the following code-snippet into it:
 if ((kAPI == "TestAPI") && (kParam == "TestParam"))

 {

 GETCMDHDL.Execute(new CGUIQuitCmd());

 }

Re-compile and execute the application from within your IDE. The button will be shown.

Now set a breakpoint at the code you have just entered and click on the button in the dialog.

The execution will stop at the breakpoint in CMyGUI::DoCallAPI.

If you will now continue with execution a new instance of CGUIQuitCmd will be created and

inserted into the command-queue of Guiliani. Shortly after this the application will exit.

3.3.2 CMD_CUSTOM

This command shows how the GUI can be manipulated with a command, while it doesn’t

matter if it was triggered from within the GUI or the application.

You find the file ExampleCommand.cpp in the folder “Source/Common/CustomExtension”

void ExampleCommand::Do()

{

 // when using GetObjectByID this define must be checked

#if defined(STREAMRUNTIME_APPLICATION)

 if (m_eTargetObject == NO_HANDLE || m_vStepSize == eC_FromInt(0))

 {

Application Binding Page 10 from 14 April 14, 2021

 return;

 }

 CGUIObject* pkObj = GETGUI.GetObjectByID(m_eTargetObject);

 if (pkObj == NULL)

 {

 return;

 }

 // Do not allow setting width or height less than zero.

 if (pkObj->GetWidth() + eC_Mul(m_vStepSize, eC_FromInt(2)) <

eC_FromInt(0) ||

 pkObj->GetHeight() + eC_Mul(m_vStepSize, eC_FromInt(2)) <

eC_FromInt(0))

 {

 return;

 }

 pkObj->InvalidateArea();

 CGUIRect kRect = pkObj->GetRelRect();

 kRect.Expand(m_vStepSize);

 pkObj->SetRelRect(kRect);

 pkObj->InvalidateArea();

#endif

}

In this command a target-object will be resized according to some value. After some checks to

prevent unexpected behaviour (e.g. objects with negative sizes), the target-object will be

invalidated with its current dimensions. Then it will be resized and again invalidated.

Place two buttons in a dialog. Attach the CMD_CUSTOM to the first one and use the ID of the

second one for the attribute “TargetObjectID”. Enter the value of 10.00000 for the attribute

“StepSize”

Application Binding Page 11 from 14 April 14, 2021

Run the application and click on the first button. You will see that the other will grow bigger

every time you click on it.

4 Extend the functionality of Guiliani

To extend the functionality of Guiliani and use it inside your application, you can either do this

manually by sub-classing a Guiliani-class (e.g. CGUIBehaviour) or creating a Custom-

Extension.

The advantage when using Custom-Extensions is that the designer can use them directly within

the GSE and play around with them without any programming knowledge.

The programmer just fills the important parts of the generated shell with custom code for

visual representation and behaviour and updates the GSE and application.

But also the “traditional” Guiliani-extension by sub-classing has its charm, since it can be used

inside the application without bothering the designer of its use in the GSE.

Note: when using Custom-Extensions during project-design you are strongly encouraged

to use versioning inside the extensions to avoid breaking the project.

4.1 Create new features by sub-classing

Application Binding Page 12 from 14 April 14, 2021

Extending a Guiliani-feature is as easy as sub-classing anything else in the world. So we are

covering the more interesting part of Custom-Extensions here.

4.2 Custom-Extensions

There are a few pre-build Custom-Extensions (one for each type) shipped with Guiliani. You

can find them inside the folders “Common/Source/CustomExtension” and

“Common/Include/CustomExtension” of your Guiliani-application.

Custom-Extensions can directly be used in the GSE to have an even better WYSIWYG-

experience. While the application is executed the Custom-Extensions will be created

automatically when needed and filled with the attributes as in the GSE-project. This also

means that the same code will be used for the application and the GSE.

Note: please be sure to always update and re-compile both application and GSE after

changing to avoid any problems.

The following image shows how the code is used inside the application and the GSE

4.2.1 Generating a Custom-Extension in the GSE

Choose “Custom Extensions -> Create custom extension…” from the main screen to open the

Custom Extension Generator.

In the opening window, choose the type of extension you would like to generate from the

combo-box. Then enter a name for the newly generated class in the respective input field. GSE

will automatically propose an ID for this name. This ID will be accessible from code through

an enumeration. Finally hit the “OK-button” to let GSE generate the skeleton code for you and

place it in the folders according to the project-settings.

Note: The folder where the generated files are placed is set in

“Settings->Project Settings->Simulator Folder”.

Application Binding Page 13 from 14 April 14, 2021

Note: The license limits for Custom Extensions apply to the usability within the GSE.

Guiliani can, of course, be extended with new customized functionality with no

restrictions.

4.2.2 Use Custom-Enumeration

If one of the Custom-Extensions uses an internal enumeration and uses streaming for reading

and writing of values of this enumeration type, it can be used to allow the designer in the GSE

to select values of this enum with the respective enum value names instead of the literal integer

values represented by them.

Assume for instance that the example control (see above) has an internal enum that is declared

like this:

enum MyEnum_t

{

 MY_VALUE_1,

 MY_VALUE_2

};

and that it has a member variable of type MyEnum (called m_eValue) that it writes to a stream

in its WriteToStream-method like this:

GETOUTPUTSTREAM.WriteInt(m_eValue, "MyEnumValue");

It is possible to announce this enumeration and all of its values to GSE to have them

represented with nice strings in the GUI.

To do this the function GetCustomEnumMappings in the file CustomExtensionFuncs.cpp

(in the folder “Common/Source/CustomExtension” of the application) has to be extended

It works similarly to the other custom extension functions, and there is a separate descriptor

class called EnumMapping. For the aforementioned example, the two lines that have to be

added to the function would look like this:

rkEnumMappings.push_back(

 EnumMapping("MyEnumValue", MyControl::MY_VALUE_1, "MY_VALUE_1"));

rkEnumMappings.push_back(

 EnumMapping("MyEnumValue", MyControl::MY_VALUE_2, "MY_VALUE_2"));

The parameters of the EnumMapping constructor are:

 First, the XML tag of the attribute that is used when streaming the value (see the

WriteInt example above).

Application Binding Page 14 from 14 April 14, 2021

 Second, the actual value. It is recommended to reference the value like this (instead of

hard-coding integer values) so the compiler produces an error in case you have to

change the enum during development.

 And third, the value as a human-readable string. To avoid confusion it is recommended

to use the same text as the enum value identifier.

