

GSE HowTo 7 Page 1 from 26 December 05, 2017

©2017 TES Electronic Solutions GmbH

HowTo 7 - using a Custom Extensions in GSE

A guide to create your own Custom Extension for using in a GSE project

Product: Guiliani Streaming Editor (GSE)

Release version: 2.2

Release date: August 31, 2018

GSE HowTo 7 Page 2 from 26 December 05, 2017

©2017 TES Electronic Solutions GmbH

Disclaimer

The information in this document is subject to change without notice and does not represent a

commitment on the part of TES Electronic Solutions GmbH. The software described by this

document is subject to a License Agreement and may not be copied to other media. No part of this

publication may be copied, reproduced or otherwise transmitted or recorded, for any purpose,

without prior written permission by TES Electronic Solutions GmbH.

“Guiliani.de”, “Guiliani”, “Guiliani Streaming Editor”, “GSE” and associated logos are

(registered) trademarks of TES Electronic Solutions GmbH.

Windows, Visual Studio and Visual C++ are registered trademarks of Microsoft Corporation in

the United States and/or other countries.

All other trademarks are the property of their respective owners and use of them does not imply

any affiliation with or endorsement by them.

Guiliani, guiliani.de and GSE are products of

TES Electronic Solutions GmbH

Hanauer Landstrasse 328-330

60314 Frankfurt am Main

Germany

Email: support@guiliani.de

Website: http://www.guiliani.de

Forum: https://www.guiliani.de/forum/

HelpDesk: https://guiliani.on.spiceworks.com/portal

mailto:support@guiliani.de
http://www.guiliani.de/
https://www.guiliani.de/forum/
https://guiliani.on.spiceworks.com/portal

GSE HowTo 7 Page 3 from 26 December 05, 2017

©2017 TES Electronic Solutions GmbH

Table of contents

1. Introduction .. 5

1.1. Assumed knowledge ... 5
1.2. Prerequisites .. 5
1.3. Documentation conventions .. 5
1.4. Shortcuts .. 6

1.5. This document’s goal .. 7

2. Using a Custom Extension with programming the GSE .. 8

2.1. Step 1: Load project “step by step” ... 8
2.2. Step 2: Adding a CustomExtension in GSE .. 8

2.2.1. Adding images to burner 3 ... 8

2.2.2. Adding a switch .. 10

2.2.3. Adding a Custom Extension command .. 11

2.2.3.1. Create a Custom Extension ... 12

2.2.3.2. Copy files from the StreamRuntime ... 13

2.2.3.3. Re-run CMake ... 16

2.2.3.4. Recompile GSE in your IDE... 17

2.2.3.5. Look for our Custom Extension command in the GSE 17

2.2.3.6. Add a parameter to our Custom Extension command 18

2.2.3.6.1. ReadFromStream ... 19

2.2.3.6.2. WriteToStream .. 20

2.2.3.6.3. Do()-method .. 20

2.2.3.6.4. Change CustomExtensionFuncs.cpp ... 22

2.2.3.6.5. Add our Custom Extension command into the project.................................... 22

2.3. Step 3: How to continue? .. 24

2.3.1. Sample solution .. 24

2.3.2. Continuing HowTos ... 24

3. Index ... 25

GSE HowTo 7 Page 4 from 26 December 05, 2017

©2017 TES Electronic Solutions GmbH

Table of figures

Fig. 1 This “How To” result ... 7

Fig. 2 Adding image for AID_IMAGE_7 .. 9
Fig. 3 Attributes AID_IMAGE_7 .. 9
Fig. 4 Attributes AID_IMAGE_8 .. 10
Fig. 5 Switch added .. 11
Fig. 6 Choose create Custom Extension .. 12

Fig. 7 Enter name for Custom Extension ... 12
Fig. 8 Custom Extension created ... 12
Fig. 9 Select .h files from the project ... 13
Fig. 10 .h files copied to StreamRuntime ... 14
Fig. 11 Our command is available ... 17

Fig. 12 Constructor added .. 18
Fig. 13 Define the parameter .. 19
Fig. 13 ReadFromStream ... 19
Fig. 15 WriteToStream ... 20
Fig. 16 Do()-method ... 20
Fig. 17 Needed includes ... 21
Fig. 18 CustomExtensionFuncs.cpp before changing .. 22

Fig. 19 CustomExtensionFuncs.cpp after changing ... 22
Fig. 19 Attribute EnlargeBurner... 23

GSE HowTo 7 Page 5 from 26 December 05, 2017

©2017 TES Electronic Solutions GmbH

1. Introduction

This document explains step by step how to use a Custom Extension command in a GSE project.

1.1. Assumed knowledge

 Basic handling of GSE

 It is recommended to read “HowTo 1 - build a project step by step” and “HowTo 5 - using of

CMake and an IDE for GSE”, first.

 This document is based on the project which was built during the HowTos 1 to 6. Therefore

we recommend you to read these documents, too.

1.2. Prerequisites

 Unpacked Guiliani SDK including GSE

 Your project “step by step” created in “HowTo 6” (or the “step by step” project inside the

folder called “HowTo 6 - sample solution”)

1.3. Documentation conventions

Whenever you can use keys from your computer’s keyboard, these will be displayed in square

brackets (e.g.,” To run your project press [Ctrl] + [r].”).

Menu commands or file path used in this document will be shown in italic.

Text that appears in the software on controls will be printed in bold and blue.

Whenever the reader of this document has to do something in his project, the text will start

with this triangle.

Results will be shown using this arrow.

GSE HowTo 7 Page 6 from 26 December 05, 2017

©2017 TES Electronic Solutions GmbH

In this document, we use icons whenever we will warn the user or will give him additional or

important information.

The speech bubble icon will show additional helpful information.

Whenever a text begins with an exclamation mark icon, it contains important information

that is essential for the current chapter.

A warning sign icon signals serious issues and potential risks that require your full

attention.

1.4. Shortcuts

In the documents, we often select a command from the window. These can be selected by the

following short cuts, too:

File New Project… [Ctrl] + [Shift] + [n]

File New Dialog… [Ctrl] + [n]

File Save Project… [Ctrl] + [s]

File Run Simulation… [Ctrl] + [r]

GSE HowTo 7 Page 7 from 26 December 05, 2017

©2017 TES Electronic Solutions GmbH

1.5. This document’s goal

At the end of this HowTo you will have learned

 how to create a Custom Extension

 how to use a Custom Extension command

 and more

The main dialog will look like this:

Fig. 1 This “How To” result

GSE HowTo 7 Page 8 from 26 December 05, 2017

©2017 TES Electronic Solutions GmbH

2. Using a Custom Extension with programming the GSE

2.1. Step 1: Load project “step by step”

Start the GSE and load the created Step by Step project from HowTo 6 (step_by_step.gpr).

2.2. Step 2: Adding a CustomExtension in GSE

In the last HowTos (up to 6 - using CallApplication APIs in GSE) we added four UserCommands

and one CallApplication API to one image (both AID_IMAGE_5 and AID_IMAGE_6). This

led to a lot of additional attributes, causing us to lose the overview of the attributes.

Would it not be better to put all these commands together in one command?

This is possible – using the Custom Extension command.

In this HowTo the Custom Extension command will be used to change the appearance of burner

3: it will have a small plate and when you click onto a switch, the plate will be enlarged. A

second click will enable the small plate again.

2.2.1. Adding images to burner 3

Before we can add the Custom Extension command, we have to add the images which will be

shown when clicking onto the switch, and the switch itself.

Add two Images from the “Controls” window to our Main dialog.

Set the following attributes:

Attribute AID_IMAGE_7 AID_IMAGE_8

XPos 480 495

YPos 80 95

Width 90 60

Hight 90 60

Invisible unchecked Checked

ImageID IMG_3_MED_0 IMG_3_SMALL_0

To add the images you have to click onto the button behind “ImageID”. Add the images

“3_med_0.png” for AID_IMAGE_7 and “3_small_0.png” for AID_IMAGE_8 from the

folder “How to 7 – resources” inside the data folder for this How To.

GSE HowTo 7 Page 9 from 26 December 05, 2017

©2017 TES Electronic Solutions GmbH

Fig. 2 Adding image for AID_IMAGE_7

The attributes should be set like this:

Fig. 3 Attributes AID_IMAGE_7

GSE HowTo 7 Page 10 from 26 December 05, 2017

©2017 TES Electronic Solutions GmbH

Fig. 4 Attributes AID_IMAGE_8

2.2.2. Adding a switch

The switch will have the functionality of a check box.

Add a Checkbox from the “Controls” window to our Main dialog and set the following

attributes:

Attribute AID_CHECKBOX_1

XPos 493

YPos 172

Width 64

Hight 16

GUIText / Width 64

GUIText / Height 16

Selected checked

CheckBoxLayout ICON_FILL_OBJECT

SelectedImageID… IMG_SWITCH_ON

NotSelectedImageID… IMG_SWITCH_OFF

The images can be found inside the folder “How to 7 – resources” of your SDK’s

documentation folder (“Switch_on.png” and “Switch_off.png”).

GSE HowTo 7 Page 11 from 26 December 05, 2017

©2017 TES Electronic Solutions GmbH

Save your project and run it.

The project should look like this:

Fig. 5 Switch added

You can click onto the switch, but nothing happens.

We have to add the Custom Extension command.

2.2.3. Adding a Custom Extension command

Before we add the command, just think about what the command should do:

It should toggle the size of burner 3 – this is: changing the visibility of our images

AID_IMAGE_7 and AID_IMAGE_8.

Now let us add the Custom Extension command.

GSE HowTo 7 Page 12 from 26 December 05, 2017

©2017 TES Electronic Solutions GmbH

2.2.3.1. Create a Custom Extension

Choose “Create Custom Extension…” from the menu “Custom Extensions”.

Fig. 6 Choose create Custom Extension

In the new opened window, “AddCommand” is pre-selected. So we do not have to choose a type

for our Custom Extension.

Enter “EnlargeBurner” as the “Command class name”.

The Command-ID will be created from the name we chose.

Fig. 7 Enter name for Custom Extension

Click onto “OK”.

The following message appears, telling us, that the Custom Extension has been created

successfully and that you have to recompile the GSE to add the Custom Extension

command to your project:

Fig. 8 Custom Extension created

GSE HowTo 7 Page 13 from 26 December 05, 2017

©2017 TES Electronic Solutions GmbH

Just click onto “OK”.

The next thing we have to do is to add our command to the GSE.

If you are looking for the commands available at the moment (e.g. look at “CommandClassID”

for the check box), you will see, that our command has not been added, yet.

Close the GSE and your IDE.

2.2.3.2. Copy files from the StreamRuntime

We want to change the size of burner 3 using different images. Our Custom Extension command

needs to know the object IDs. Therefore we need to copy the needed Stream Runtime files from

our project folder to the appropriate StreamRuntime folder.

Open the folder “C:\step_by_step\temp” and select all “.h” files.

Fig. 9 Select .h files from the project

GSE HowTo 7 Page 14 from 26 December 05, 2017

©2017 TES Electronic Solutions GmbH

Copy the selected “.h” files to our GSE, into the folder

“C:\Gui_SDK_VS2015\StreamRuntime\Include\GUIConfig”.

Replace existing files.

Fig. 10 .h files copied to StreamRuntime

GSE HowTo 7 Page 15 from 26 December 05, 2017

©2017 TES Electronic Solutions GmbH

If you use the StreamRuntime folder you have specified in CMAKE, you have not to copy

the files. Just mark the checkbox “Overwrite Header files in StreamRuntime” when you

run the simulation.

GSE HowTo 7 Page 16 from 26 December 05, 2017

©2017 TES Electronic Solutions GmbH

2.2.3.3. Re-run CMake

Start CMake.

If you have not used it since HowTo 5, all inputs should still be available. If not, just refer

to “How to 5 - using of CMake and an IDE for GSE” on how to set up your project.

Just click onto “Configure” and then onto “Generate”.

Your project will be re-generated. This means, the files for your Custom Extension command

have been added.

You will find your files here:
 “C:\Gui_SDK_VS2015\StreamRuntime\Include\CustomExtension”,

“C:\Gui_SDK_VS2015\StreamRuntime\Source\CustomExtension”.

GSE HowTo 7 Page 17 from 26 December 05, 2017

©2017 TES Electronic Solutions GmbH

2.2.3.4. Recompile GSE in your IDE

As in the HowTos 5 and 6, we will use Microsoft’s Visual Studio as an example for the IDE.

If you have problems with starting MS Visual Studio, please refer to “How to 5 - using of CMake

and an IDE for GSE” chapter 2.2.

For this HowTo, we will use “Guiliani_2.1_SDK_including_GSE_Windows-

Desktop_VS2015” and “Microsoft Visual Stusio Express 2015 (Microsoft Visual Studio

14.0)”.

Open our project’s build folder “Build_GSE_HowTo” we created in HowTo 5. Inside you

will find the file “GSE.sln”. Double click onto it.

Set GSE as the StartUp Project.

From the menu “Build” choose “Rebuild Solution” to make a new compilation of the GSE.

This should be successful without any errors.

Now select “Debug / Start Debugging” from the menu (or press F5) to start the GSE

directly out of your development environment (Microsoft Visual Studio).

2.2.3.5. Look for our Custom Extension command in the GSE

Select (click onto) “AID_CHECKBOX_1” in the “Object Hierarchy” window.

Click onto the triangle in the field behind “CommandClassID”.

You can see that our command has been included and is available for using:

Fig. 11 Our command is available

GSE HowTo 7 Page 18 from 26 December 05, 2017

©2017 TES Electronic Solutions GmbH

If you select “ENLARGEBURNER” you can use our command.

But first we should think about what is our command good for:

When we click onto the switch, the burner will be enlarged or will shrink.

But should this command only be available for burner 3?

No, we should give our command a parameter containing the burner number, so we can handle

other burners later.

2.2.3.6. Add a parameter to our Custom Extension command

Close the GSE without saving the project.

In your IDE open the files “EnlargeBurner.cpp”

(“C:\Gui_SDK_VS2015\StreamRuntime\Source\CustomExtension”) and

“EnlargeBurner.h” (“C:\Gui_SDK_VS2015\StreamRuntime\Include\CustomExtension”).

For Microsoft VS 2015/2012 users: you will find the files in the „StreamRuntime“ project,

inside the folders “Header Files\Custom Extension” and “Source Files\Custom Extension”.

We have to define the call for our command in the .h file.

Enter the following code:

/** Constructor.
@param kParam Optional parameter which represents the burner number*/
EnlargeBurner(const eC_String& kParam) : m_kParam(kParam) {};

Fig. 12 Constructor added

GSE HowTo 7 Page 19 from 26 December 05, 2017

©2017 TES Electronic Solutions GmbH

The next step is to define our parameter as an eC_String.

Enter the following code:

eC_String m_kParam;

Fig. 13 Define the parameter

In the .cpp file we first have to make sure that our parameter can be entered in the GSE and will

be stored.

This will be done in the functions “ReadFromStream” and “WriteToStream”.

2.2.3.6.1. ReadFromStream

Reading will be done using GETINPUTSTREAM.READ_STRING. You have to give a string as a parameter

that will represent the text that will be shown in the GSE.

Enter the following code:

m_kParam = GETINPUTSTREAM.READ_STRING("BurnerNumber");

Fig. 14 ReadFromStream

GSE HowTo 7 Page 20 from 26 December 05, 2017

©2017 TES Electronic Solutions GmbH

2.2.3.6.2. WriteToStream

Writing will be done using GETOUTPUTSTREAM.WriteString. You have to give the parameter itself

and a string with the parameter’s name.

Enter the following code:

GETOUTPUTSTREAM.WriteString(m_kParam, "BurnerNumber");

Fig. 15 WriteToStream

2.2.3.6.3. Do()-method

The code that will handle what our command will do has to be entered in the Do()-method of our

EnlargeBurner command.

Here, you will see what has to be implemented:

Fig. 16 Do()-method

GSE HowTo 7 Page 21 from 26 December 05, 2017

©2017 TES Electronic Solutions GmbH

Let us go through the code line by line:

26: We need access to the image, which represent the large plate from burner 3.

 The last string is the name of the object that will be shown in a message in case an exception

will be thrown.

27: The same as in line 26, but this time for our smaller plate.

29: We will implement what has to be done, if burner 3 sent the command.

31: Only work with the two images if we are sure, that the pointers show to them.

33: Toggle the state of invisibility for the big plate.

34: Toggle the state of invisibility for the small plate.

Enter the following code:

CGUIImage* pkImageBig = static_cast<CGUIImage*>(GETGUI, GETGUI.GetAndCheckObjectByID
(AID_IMAGE_7, "BurnerImage"));

CGUIImage* pkImageSmall = static_cast<CGUIImage*>(GETGUI, GETGUI.GetAndCheckObjectByID
(AID_IMAGE_8, "BurnerImage"));

if (m_kParam == 3)
{
 if ((pkImageBig) && (pkImageSmall))
 {
 pkImageBig->SetInvisible(!pkImageBig->IsInvisible());
 pkImageSmall->SetInvisible(!pkImageSmall->IsInvisible());
 }
}

We have to add two defines so the compiler knows how to handle “CGUIImage” and “GETGUI”.

Fig. 17 Needed includes

Enter the following code:

#include "GUIImage.h"
#include "GUI.h"

One thing is left: we have to add the parameter to the attributes list in the GSE (our command is

there, as we have seen before).

GSE HowTo 7 Page 22 from 26 December 05, 2017

©2017 TES Electronic Solutions GmbH

2.2.3.6.4. Change CustomExtensionFuncs.cpp

In this file our Custom Extension command “EnlargeBurner” is included already.

Fig. 18 CustomExtensionFuncs.cpp before changing

But we have to add the description for the attribute:

Fig. 19 CustomExtensionFuncs.cpp after changing

Change the following code from:

rkCommands.push_back(CommandDescriptor(ENLARGEBURNER, "ENLARGEBURNER", new
EnlargeBurner()));

to:

rkCommands.push_back(CommandDescriptor(ENLARGEBURNER, "ENLARGEBURNER", new
EnlargeBurner("Enter burner number")));

2.2.3.6.5. Add our Custom Extension command into the project

Build the GSE.

Now start the GSE directly out of your development environment.

Load the “step_by_step” project.

Select (click onto) “AID_CHECKBOX_1” in the “Object Hierarchy” window.

Click onto the triangle in the field behind “CommandClassID” and choose

“ENLARGEBURNER”.

GSE HowTo 7 Page 23 from 26 December 05, 2017

©2017 TES Electronic Solutions GmbH

You can see, we have our own command attribute called “EnlargeBurner”:

Fig. 20 Attribute EnlargeBurner

And our command has the attribute “BurnerNumber” (as we entered it in the code).

Enter “3” as “BurnerNumber”.

Save your project and run it.

Now the burner changes its size when clicking onto the switch.

Do not forget to copy the .h files and recompile the GSE if you want to use the stand alone

StreamRuntime.

That was it! Now you have created your own Custom Extension successfully.

GSE HowTo 7 Page 24 from 26 December 05, 2017

©2017 TES Electronic Solutions GmbH

2.3. Step 3: How to continue?

2.3.1. Sample solution

Now it should be clear how to create and use your own Custom Extension command.

If you encountered problems or wish to have the solution without creating the project on your

own, we have added the sample solution into the folder called “How to 7 - sample solution” inside

the documentation folder. Here you will find the GSE Project (step_by_step.gpr).

For this HowTo there are no additional resources.

For Windows user inside the folder “temp” there is an executable StreamRuntime.exe.

2.3.2. Continuing HowTos

You will find an overview of continuing HowTos in the document “How to 0 - an overview of

building GSE projects”.

Don’t forget to visit our homepage www.guiliani.de to get more information, demos, help, videos

and the latest news about guiliani and GSE.

http://www.guiliani.de/

GSE HowTo 7 Page 25 from 26 December 05, 2017

©2017 TES Electronic Solutions GmbH

3. Index

A

Add a parameter to our Custom Extension command 21
Add our Custom Extension command into the project 27
Adding a Custom Extension command 8, 12
Adding a switch 11
Adding images to burner 3 8
Assumed knowledge 5

C

Change CustomExtensionFuncs.cpp 27
CMake

Re-run 19
Continuing How Tos 29
Copy files from the StreamRuntime 15
Create a Custom Extension 13
Custom Extension

Create 13
Using 8

Custom Extension command
Add a parameter 21
Add to the project 27
Adding 8, 12

Custom Extension command in the GSE 20
CustomExtensionFuncs.cpp

Change 27

D

Do()-method 24
Documentation conventions 5

E

EnlargeBurner.cpp
Do()-method 24
ReadFromStream 23
WriteToStream 24

G

GSE
Custom Extension command 20

guiconfig 17

H

How to continue? 29

I

IDE
Recompile GSE 20

Images
Adding 8

L

Load project 8

P

Prerequisites 5
Project

Load 8

R

ReadFromStream 23
Recompile GSE in your IDE 20
Re-run CMake 19

S

Sample solution 29
Short cuts 6
StreamRuntime

Copy files 15
Switch

Adding 11

T

temp folder 15

U

Using a Custom Extension 8

GSE HowTo 7 Page 26 from 26 December 05, 2017

©2017 TES Electronic Solutions GmbH

W WriteToStream 24

