

GuilianiDemo Page 1 from 28 November 24, 2022

www.guiliani.de

GuilianiDemo Exposed

A short walkthrough to explain GuilianiDemo and how it works

Product: Guiliani Technical Showcase (GuilianiDemo)

Release version: 2.5

Release date: November 24, 2022

Table of contents

1 Introduction / Intended audience .. 3

2 Helpful resources.. 3

3 View the project ... 3

4 Overview .. 4

5 General Explanations ... 5

5.1 Parts of a Guiliani-Application .. 5

5.2 Dynamic behaviour.. 5

5.3 Creating Applications with multiple screens ... 5

5.4 Dialogs with sub-pages .. 7

5.5 Dialogs and their source-files .. 7

5.6 Shared functionality ... 8

5.6.1 Menu... 8

5.6.2 Info-Button ... 9

6 The screens explained .. 10

6.1 Main ... 10

6.1.1 Code ... 10

6.2 Dynamics ... 11

6.2.1 GSE-project .. 11

6.2.2 Code ... 13

6.3 Controls ... 14

6.3.1 GSE-project .. 14

http://www.guiliani.de/

GuilianiDemo Page 2 from 28 November 24, 2022

www.guiliani.de

6.3.2 Code ... 15

6.4 Advanced ... 17

6.4.1 GSE .. 17

6.4.2 Code ... 18

6.5 Layer .. 19

6.5.1 GSE-project .. 19

6.5.2 Code ... 19

6.6 Data .. 20

6.6.1 GSE-projects .. 20

6.6.2 Code ... 21

6.7 Container ... 22

6.7.1 GSE-project .. 22

6.7.2 Code ... 23

6.8 Text .. 24

6.8.1 GSE-project .. 24

6.8.2 Code ... 24

6.9 Settings .. 25

6.9.1 GSE-project .. 26

6.9.2 Code ... 27

6.10 Scratchpad ... 28

http://www.guiliani.de/

GuilianiDemo Page 3 from 28 November 24, 2022

www.guiliani.de

1 Introduction / Intended audience

This manual explains how GuilianiDemo works. It lists all screens and the actions related to

that screens. And it describes how everything is done on a very high level. When reading the

code-parts of this tutorial you should be able to understand the basic principles of object-

oriented-programming.

Note: We are explaining only how the methods connect the GUI and the application and what

parts of Guiliani are involved.

2 Helpful resources

There are basically two main resources which will help to enhance your knowledge about

Guiliani and how are things done in the GuilianiDemo:

- GSE Manual (optional: GSE Control Attributes)

- Guiliani API Documentation

If you encounter any questions which are not answered in this tutorial please refer to any

of these resources.

3 View the project

In order to examine the project in more detail you will need to open it in the GSE as well as the

corresponding source-files in your text-editor or IDE. Please find more detailed description on

how to do this in the documentation of the GSE and the used IDE.

http://www.guiliani.de/

GuilianiDemo Page 4 from 28 November 24, 2022

www.guiliani.de

4 Overview

GuilianiDemo has multiple screens (screen-filling dialogs) where each will demonstrate a sub-

part of Guiliani’s feature-rich portfolio.

Every screen has an info-button in the upper-right corner to show/hide a description of the

contents of the current screen.

Sometimes the screen will have multiple buttons at the bottom of the screen. These can be used

to navigate inside the screen to different sub-pages, where different features are demonstrated.

The screens are:

- Dynamics: this screen demonstrates basic dynamic visual-features of Guiliani like

easing or animation as well as playing videos

- Controls: basic controls like buttons and sliders

- Advanced: more advanced controls like knobs, calendar and gauge

- Layer: demonstration of hardware-layers

- Data: this screen shows visualization of data in different controls

- Container: various container

- Text: demonstration of text-input via onscreen-keyboard and text-rendering (plain,

rich) and dynamic resizing.

- Settings: set the language, the skin and other parameters of the demo

- Scratchpad: here you can place your controls and try out the different things Guiliani is

offering

http://www.guiliani.de/

GuilianiDemo Page 5 from 28 November 24, 2022

www.guiliani.de

5 General Explanations

5.1 Parts of a Guiliani-Application

Every application using Guiliani will consist of the visual description (properties, dialogs and

resources) created in the GSE and the code using the Guiliani-API to communicate with the

GUI and create dynamic behaviour. The code will include the pre-built libraries and some start

up-code additionally to your business logic. The starting point for your application-code will

be the file MyGUI_SR.cpp located in <APP>/Source-folder.

5.2 Dynamic behaviour

For many purposes there are built-in dynamics (Behaviours and Commands) you can use

directly in the GSE-project without writing any line of source-code. That can be moving and/or

resizing objects, changing visibility or transparency.

The most often used way in GuilianiDemo to process events from the GUI in the application-

code is the CallAPI-command which can execute all sorts of things directly in the GUI-thread.

Guiliani will call the CMyGUI::DoCallAPI() method with the strings API and Parameter you

have specified in the GSE.

If you are unsure what is executed when interacting with an object, just click on that object in

the GSE and examine the attached dynamics in the attribute-window.

For more information about the internals of the executed Behaviour and/or Command please

refer to the Guiliani API Documentation.

5.3 Creating Applications with multiple screens

When your application consists of multiple screens which can be shown depending on various

actions, you can use Dialog-Transitions to move from one dialog to another. There are several

settings for the visual transition made during the dialog-switch as well.

In general the following procedure is done:

- Load the new dialog, it will be invisible by default

- Transition to the new dialog using blend, crossfade, dissolve, push, …

- Delete the old dialog

To prevent data-loss it is advised to save all relevant data from the former dialog BEFORE the

transition is started. This can easily be done by using a CallAPI-command beforehand.

After the new dialog is shown there may be additional initialization needed for TextFields,

ComboBoxes, etc. The new dialog will be loaded and shown as it was designed in the GSE. If

you want to run initialization on any object in the new dialog, you can do this now by using

CallAPI again.

http://www.guiliani.de/

GuilianiDemo Page 6 from 28 November 24, 2022

www.guiliani.de

GuilianiDemo uses three commands which are executed when switching to a new dialog.

These commands are executed from the menu located in <APP>/Source/Menu.cpp.

- CallAPI (“SetTransition” and “<Dialog-Name>”)

- DialogTransition

- CallAPI (“<Dialog-Name>”)

Here the first CallAPI will set up the transition to the dialog. This can be selected in the

Settings-dialog and is persisted in the application code.

After that the transition to the Animation-dialog is performed.

When the Animation-dialog is finally shown the second CallAPI-command will set up all

things needed to interact with the controls according to the logic of the dialog. This will be

explained in more detail in the code for each dialog.

http://www.guiliani.de/

GuilianiDemo Page 7 from 28 November 24, 2022

www.guiliani.de

5.4 Dialogs with sub-pages

When having a dialog with more data than can be shown on the display it may be sensible to

create sub-pages and partition the data into these.

For example the Control-dialog has several sub-pages (Buttons, Slider1 and Slider2) where

most of the available basic control-types in Guiliani are presented. To have all these controls in

one dialog will be very difficult on small screens (e.g. 480x272 pixels).

So we created sub-pages (red)

containing a small part of the controls

which can be dynamically shown by the

buttons on the bottom of the screen.

Each of these sub-pages is a TabItem

inside the Client-area of a

TabContainer.

This construct is used in most of the dialogs.

5.5 Dialogs and their source-files

In GuilianiDemo each dialog, except for the Main-dialog and the ScratchPad, has a separate

source-file which handles all necessary things like initialization and interaction with the GUI.

This follows the object-oriented principle of Model-View-Control, where our class is the

Control-part and the GUI is the View. The Model-part is often integrated into the Control-part,

but when its size is increasing a separate class might be a good idea.

The source-files are in the <APP>/Source-folder and named after the dialog they control.

Each of these DemoXXX.cpp-files contains a class for the dialog. This class inherits the header-

only class DemoBase which is an abstract class defining the methods Init() and DeInit(). This

means that every derived class must implement these methods before you can create an

instance of that particular class.

Also it has an empty implementation for the method HandleCallAPI() which will be called

from the application when there are CallAPI-executions for a specific dialog.

http://www.guiliani.de/

GuilianiDemo Page 8 from 28 November 24, 2022

www.guiliani.de

This is done in CMyGUI::DoCallAPI() depending on the name of the dialog given by the

parameter kAPI.

In CMyGUI::DoCallAPI() the second CallAPI after the transition to the dialog has finished. It

creates a new instance of the controller-class connected to the dialog-name and calls the

method DemoXXX::Init() of that class.

Here the class will execute special actions to get specific objects (sliders, buttons, etc.) which

are needed for interaction with the dialog as well as setting up more advanced things like

Observers or create a timer.

The method DemoXXX::DeInit() may be a central place to clean up your class (release

memory, delete objects, etc.) when it is going to be deleted. So call this method from the

destructor.

5.6 Shared functionality

Two main-functionalities are shared between all dialogs in GuilianiDemo. So they can be used

in every dialog, but implemented only in one place.

5.6.1 Menu

You will notice a small triangle pointing down in the top-middle of the screen. This is the

main-menu which will expand/collapse by clicking on the button.

Inside the menu you can choose one from the available dialogs and directly jump to it.

This menu is completely made in code and is located in the files <APP>/Source/Menu.cpp

and <APP>/Include/Menu.h. Essentially all the menu makes is moving down or up the

container when clicking on the button and executing a bunch of commands when clicking on

one of the dialog-icons.

http://www.guiliani.de/

GuilianiDemo Page 9 from 28 November 24, 2022

www.guiliani.de

5.6.2 Info-Button

The info-button will involve some more logic as it applies several animations to the

INFO_TEXT and TEXT_BACKDROP located in the container INFO_CONTAINER in each

dialog.

The info-button in each dialog is attached to CallAPI

with parameter “InfoText” which will call the method

CMyGUI::AnimateInfoTxt(), where the needed objects

are searched in the currently active dialog and prepared

for the animation.

The first click opens the info-field and the second one

closes it again.

The animations are a move- and a size-animation for the

background which are started at the same time with the

same duration and will inform a BoxObserver, which

has been registered, when the state of the animation is

changed, e.g. playing, stopped, deleted.

If the move- and size-animations have finished the

BoxObserver will create a TextAnimation which will

alpha-blend the text from transparent to opaque.

This construct is a demonstration of how to connect

different animations and how the observer for an

animation works.

http://www.guiliani.de/

GuilianiDemo Page 10 from 28 November 24, 2022

www.guiliani.de

6 The screens explained

Now every screen will be described using the GSE-project as well as the code. First we will

have a look at how the screens look like and which parts are there. After that we will go

through the code to look at the Guiliani-APIs which are used.

If any function is unclear please refer to the official Guiliani API Documentation.

6.1 Main

6.1.1 Code

Source-File: <APP>/Source/MyGUI_SR.cpp

When starting the application most of the code is used to set up things needed for the

application (CMyGUI::CMyGUI()). The method InitDialog() is used to handle specific

requests via DoCallAPI() and to keep track which dialog is currently shown.

http://www.guiliani.de/

GuilianiDemo Page 11 from 28 November 24, 2022

www.guiliani.de

6.2 Dynamics

In this dialog there are three sub-screens which are shown / hidden with the button at the

bottom of the screen. The sub-screens will show a simple animation, the different types of

easing for dynamics and a random video-file.

6.2.1 GSE-project

Have a look at the different sub-dialogs in this screen. Each sub-dialog has an own top-bar to

display the correct headline and to show the back- and info-button.

6.2.1.1 Animation

The sub-dialog Animation will show four buttons to control the animation of an image.

Each button has a command attached to start or stop a recorded animation. No special code is

needed for this part to work.

6.2.1.2 Easing

Here we have a list of the various easing-types available in Guiliani for any dynamic visuals,

i.e. animations and an object which will move down towards the bottom-bar using the selected

easing.

http://www.guiliani.de/

GuilianiDemo Page 12 from 28 November 24, 2022

www.guiliani.de

Here is the list, which is actually a TouchScrollView you

can swipe with your fingers vertically to navigate to the

desired list-item.

Each element in the list is a button triggering CallAPI with

parameter “StartAnimation” and the type of easing to be

used for the animated object.

http://www.guiliani.de/

GuilianiDemo Page 13 from 28 November 24, 2022

www.guiliani.de

6.2.1.3 Video

This sub-dialog shows the video-file, which is randomly picked when the dialog is loaded and

additional buttons which are used to control the video, e.g. play, stop, rewind. All the buttons

are attached to CallAPI-commands which execute the various actions.

6.2.2 Code

Source-File: <APP>/Source/DemoAnimation.cpp

The method Init() will collect all necessary objects, select the video-file and calculate the

ending position of the handle in the Easing-sub-dialog.

Additionally it will create an AnimationObserver which will react when the animations in the

Easing-sub-dialog start or end to grey out the buttons in the TouchScrollView.

HandleCallAPI() is the heart of the controller and will receive a message every time CallAPI is

triggered by a control in the GUI, i.e. when the buttons in the TouchScrollView of the Easing-

sub-dialog or the buttons for the video-playback are clicked.

http://www.guiliani.de/

GuilianiDemo Page 14 from 28 November 24, 2022

www.guiliani.de

6.3 Controls

This screen presents most of the basic controls in Guiliani and how they can interact with the

application.

6.3.1 GSE-project

6.3.1.1 Buttons

In this sub-dialog there is only one CallAPI which shows a MessageBox when clicking on the

button in the right half.

6.3.1.2 Slider1

Here we have three groups of controls which demonstrate the use of Sliders.

The groups on the left and on the right have a CheckBox

above them which uses SetObjectState to control the

visibility of the containers surrounding the controls

below.

Every time the Checkbox is clicked the Behaviour will

toggle the Invisible-state of the container.

Note: If a CompositeObject is invisible all contained

children are invisible as well.

http://www.guiliani.de/

GuilianiDemo Page 15 from 28 November 24, 2022

www.guiliani.de

The group on the right, consisting of a TextField, a

ProgressBar and a Slider, has a connection via a

DataPool-entry.

That means that when the value of one of these objects

changes all other objects which are observing this

DataPool-entry.

To open the dialog and see which DataPool-entries are

currently defined in the project and which objects are

observing these DataPool-entries use “Resources 

Manage  DataPool”.

6.3.1.3 Slider2

In this sub-dialog there are CallAPI for the buttons with “-“ and “+” to decrease and increase

the value of the segment-bar. Also there is an AutoRepeat-Behaviour attached to these two

buttons. The rest, e.g. setting up the observers for the various controls is done in the code.

The AutoRepeat-behaviour can be used to execute a

command attached to the control several times in a

specific period.

6.3.2 Code

Source-file: <APP>/Source/DemoControls.cpp.

In the method Init() all interesting objects are searched.

http://www.guiliani.de/

GuilianiDemo Page 16 from 28 November 24, 2022

www.guiliani.de

6.3.2.1 Dynamic DataPool-Entries

The RadialSlider and the SegmentBar have been connected to a dynamic DataPool-entry

during application-start up (see MyGUI_SR.cpp). The value of the SegmentBar is changed via

the method CMyGUI::DoCallAPI(), which is called by the buttons with “-“ and “+”.

6.3.2.2 Observing objects

The first paragraph will get the objects in the left group, where the Slider is horizontally

aligned, and create a class ObsvProgressImg. This class is derived from CGUIObserver and

will be informed of all changes of an object.

In its constructor the class will register itself as a value-observer for the Slider it has received

as one of its parameters.

If an observer should be able to react on a change of the observed object is needs to implement

the method OnNotification() which has the following parameters:

- current value of the observed object

- the object which has been changed (in case the observer observes more than one object)

- the x- and y-coordinates if the object is connected to a DataPool-entry.

In this specific OnNotification() the received value is set for the connected ProgressBar and

changes according to the value the image which is shown below the slider.

The sliders in the middle group are connected to the GeometryObject above them via the class

ObsvGeometry.

The right group does not need any initialization since the DataPool-entry will handle all things

internally.

The RangeSlider and the TextField in the third sub-dialog are a bit different. Here the value-

observer for the RangeSlider is the controller itself, which means that it needs to implement

also an OnNotification()-method to receive updates of the value. In this case both values of the

RangeSlider are acquired and put as a text for the TextField.

6.3.2.3 Persistence

Since there is data in this dialog which needs to be persisted over the life-cycle of the dialog

(namely the color of the GeometryObject set via the Sliders), we have a setter- and getter-

method for the color-value. These two methods are called via CMyGUI::DoCallAPI() when

the controller has been created or before it is deleted.

http://www.guiliani.de/

GuilianiDemo Page 17 from 28 November 24, 2022

www.guiliani.de

6.4 Advanced

This dialog shows some more advanced controls of Guiliani.

6.4.1 GSE

6.4.1.1 Knobs

Here we have two knob-like controls which are connected to each other and a TextField.

The button below the left Knob is attached to

CallAPI with parameter “ToggleKnob” which

will toggle how the value of the Knob will be

controlled. This can either be radial or axial

and corresponds to the attribute “AxisControl”

of the Knob.

6.4.1.2 Date/Time

In this sub-dialog a calendar and a clock are displayed. There are no dynamics attached to the

controls.

http://www.guiliani.de/

GuilianiDemo Page 18 from 28 November 24, 2022

www.guiliani.de

6.4.1.3 Gauge

This dialog demonstrates the Wheel- and Gauge-controls.

The buttons in the middle are attached to Commands which will set the value of the Wheel

accordingly. Wheel and Gauge are connected via a DataPool-entry.

6.4.2 Code

Source-file: <APP>/Source/DemoAdvanced.cpp

Most of the initialization-code is similar to the Controls-dialog. It will get some objects and set

specific values for their attributes. Additionally it will connect them together via Observers.

These are used to display the currently selected date as well as the current time, which is set by

the clock.

HandleCallAPI() is used for toggling the way the Knob is controlled and each button in the

Gauge-subdialog to define to which value the animation will set the value.

GetTime() will be called when the controller will be deleted to persist the current time used for

the Clock.

http://www.guiliani.de/

GuilianiDemo Page 19 from 28 November 24, 2022

www.guiliani.de

6.5 Layer

6.5.1 GSE-project

The only interesting parts are the LayerContainer which are assigned to the layers 1 and 2. If

the target-platform is supporting hardware-layers the first button will start / stop dynamic

changing of the content of the layer. The slider is used to change the transparency of the

LayerContainer.

6.5.2 Code

Source-file: <APP>/Source/DemoLayer.cpp

In the method Init() the relevant controls are collected which is in this case only the Slider to

control the transparency of the layer.

Additionally there is some initialisation for the DC-Wrapper done which provides the interface

to the hardware-layers.

At last a timer with an interval of 100 milliseconds is started. This is used to change the

background-colour for every available layer in the method DoAnimate().

The method OnNotification() is used to receive changes from the Slider and to change the

transparency-value for the layers.

Finally the method HandleCallAPI() receives the clicks on the button to start or stop the

changing of the layer-content.

http://www.guiliani.de/

GuilianiDemo Page 20 from 28 November 24, 2022

www.guiliani.de

6.6 Data

6.6.1 GSE-projects

6.6.1.1 Chart

This sub-dialog contains a Chart which can display discrete values of multiple data-series like

in some spreadsheet-program. The buttons on the left are all attached to CallAPI and control

the zoom and type of the Chart.

The Chart is connected via a DataPool-entry. Since

DataPool-entries can have not only one value, but also

two-dimensional arrays of value, this DataPool-entry

has multiple values.

Each row of values will form a data-series for the

Chart and will be displayed in a different color. The

values of the columns in each row are colored

identically.

Note: you can use any type of value for a cell in the

DataPool-entry. One could be a string, another one an

integer and a third a float.

http://www.guiliani.de/

GuilianiDemo Page 21 from 28 November 24, 2022

www.guiliani.de

6.6.1.2 Graph

This sub-dialog contains a Graph which displays three different functions. The buttons can be

used to zoom in or out the x- and y-axis via CallAPI.

6.6.1.3 Plot

This sub-dialog shows a Plot which displays dynamic data simulated by the application. The

buttons are used to zoom in or out the x- and y-axis via CallAPI. The button “AutoRefresh”

will toggle the auto-refresh for the Plot and the slider the period of the refresh.

6.6.2 Code

Source-file: <APP>/Source/DemoData.cpp

The method Init() searches for the needed controls which are used for dynamics. The Chart

will be set to a specific range and jumps to the beginning of the sequence. For the Graph three

different functions are created and assigned to it. And finally for controlling the AutoRefresh

for the Plot the Slider is hooked up with an Observer.

There is also a timer with 500 milliseconds created for adding data to the Plot on a periodically

basis.

The method OnNotification() will set the interval for the refresh of the Plot.

HandleCallAPI() will deal with all zooming and changing the type and the selection-mode for

the Chart. DoAnimate() will just generate two new values and add these to the Plot.

http://www.guiliani.de/

GuilianiDemo Page 22 from 28 November 24, 2022

www.guiliani.de

6.7 Container

6.7.1 GSE-project

6.7.1.1 Carousel

This dialog demonstrates the Carousel which can display several objects simultaneously.

The Sliders will control attributes like tilting-angle or width of the Carousel. The CheckBox

toggles the flow-mode which will display the objects inside the Carousel in a horseshoe

shaped list instead of a projected circle.

6.7.1.2 Container1

In this sub-dialog the screen is divided into three parts with a large TextField which can be

swiped, a static TextField and several RadioButtons. Each of these parts can be resized by

dragging the splitter-handle.

http://www.guiliani.de/

GuilianiDemo Page 23 from 28 November 24, 2022

www.guiliani.de

6.7.1.3 Container2

This sub-dialog shows two container-types: PageContainer and WheelContainer which

contain several elements.

To switch to another page in the PageContainer it can either be dragged horizontally or the

buttons at the bottom can be clicked. The CheckBox “AllowDrag” toggles if the

PageContainer can be dragged.

The elements in the WheelContainer can be cycled via vertical drag. The CheckBox “Cycle”

will toggle cyclic display.

Both CheckBoxes have a CallAPI attached to them.

6.7.2 Code

Source-file: <APP>/Source/DemoContainer.cpp

In the code there are three Observers for the Carousel, for controlling the Tilt, the Radius and

the number of elements.

In the method Init() as usual all necessary controls are searched and connected to their

Observers.

HandleCallAPI() will do the change of the flow-mode for the Carousel and toggle the

dragging and cyclic mode for the other two container.

http://www.guiliani.de/

GuilianiDemo Page 24 from 28 November 24, 2022

www.guiliani.de

6.8 Text

6.8.1 GSE-project

6.8.1.1 Keyboard

This dialog shows the Keyboard and two InputFields, where one can be obfuscated like a

password.

6.8.1.2 Text

This dialog is very simple as it only shows a large text – either as a TextField or as a

RichTextField – and a Slider which controls the width of the shown text.

Except for the buttons at the bottom of the dialog there are no dynamics.

6.8.2 Code

Source-file: <APP>/Source/DemoText.cpp

In the method Init() only the Observer for the Slider and the TextFields is created. This

Observer will simply adjust the width of the TextFields to the value of the Slider.

http://www.guiliani.de/

GuilianiDemo Page 25 from 28 November 24, 2022

www.guiliani.de

6.9 Settings

In this dialog there are some settings for the GuilianiDemo which can alter the visuals and

dynamics of the application.

The buttons on the left with little flags will switch the currently active language. Click on the

corresponding flag and the texts will immediately change. When you click on the flag for

Arabic it will also switch the font-set and the text-direction to display the texts correctly.

You can select different behavior from several ComboBoxes in the middle:

- Transition: this specifies the kind of transition which is made when navigating from the

main-dialog to another dialog. The transition back to the main-dialog is always “Push-

from-Bottom” and cannot be changed

- Background: here you can choose the background-image which should be displayed or

switch to a GeometryObject whose color can be set in the Slider1-subdialog of the

Controls-dialog

- Easing: this will set the easing used in the Gauge-dialog when the Wheel and Gauge

animate to a new value

When clicking on the button “Change Skin” you can switch between the two different image-

sets (Light, Dark).

Note: if only one image-set has been exported this button will not work at all.

The Button “Toggle Neon” can be used to toggle NEON-optimization, when using eGML-

software rasterizer.

“Toggle FPS” will show/hide onscreen FPS and “Toggle INV” will show/hide rectangles

where invalidated areas are.

http://www.guiliani.de/

GuilianiDemo Page 26 from 28 November 24, 2022

www.guiliani.de

6.9.1 GSE-project

The buttons on the left are used to switch the language of

the application.

First a CallAPI is executed and after that the resource-

sets for texts and fonts are switched to the appropriate

value.

The button on the right is used to toggle the currently

used image-set via CallAPI

6.9.1.1 Change Skin

To change the skinning of GuilianiDemo a CallAPICmd is used which will toggle the currently

used image-set and property-set. The property-set is also needed, because the text on buttons

might become unreadable when the images for this button are changed. By changing the

colours via the property-set solves this problem.

http://www.guiliani.de/

GuilianiDemo Page 27 from 28 November 24, 2022

www.guiliani.de

6.9.1.2 Change Language

By clicking on one of the flags you can change the language used in the GuilianiDemo to this

language. When clicking on the Arabic flag we also switch to another font-set, since the fonts

we use for the other languages do not contain the glyphs for Arabic.

6.9.2 Code

Source-file: <APP>/Source/DemoSettings.cpp

The method Init() is mainly used to fill the contents of the ComboBoxes for the various

settings.

It also updates the text at the bottom of the dialog displaying the currently used version of

Guiliani as well as the used Graphics-Wrapper and Platform.

In HandleCallAPI() the selected values will be persisted in the main-class when the controller

will be deleted.

ChangeBackground() will show the selected type of background and the correct image.

http://www.guiliani.de/

GuilianiDemo Page 28 from 28 November 24, 2022

www.guiliani.de

6.10 Scratchpad

This dialog can be used to play around with Guiliani. Have Fun.

http://www.guiliani.de/

